Mathematical Analysis of Raman Spectra Data Arrays Using Machine Learning Algorithms

نویسندگان

چکیده

This paper is devoted to the application of mathematical methods classification and differentiation low-resolution spectral data arrays Raman light scattering for complex biological compounds as human platelets. Spectral consisted 1266 spectra from 4 groups patients, totaling 152 people were analyzed. A random forest algorithm was used. Potential biomarkers differences between patient identified, on which given algorithms tested. Using healthy patients without therapy with cardiovascular pathologies therapy, we have achieved accuracy 83.4%. Classification off shows 76.26% 70% accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms

PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...

متن کامل

Comparative Analysis of Machine Learning Algorithms with Optimization Purposes

The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches‎. ‎Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data‎. ‎In this paper‎, ‎a methodology has been employed to opt...

متن کامل

Algorithms of Chemicals Detection Using Raman Spectra

Raman spectrometers are devices which enable fast and non-contact identification of examined chemicals. These devices utilize the Raman phenomenon to identify unknown and often illicit chemicals (e.g. drugs, explosives) without the necessity of their preparation. Now, Raman devices can be portable and therefore can be more widely used to improve security at public places. Unfortunately, Raman s...

متن کامل

Machine Learning Methods for Quantitative Analysis of Raman Spectroscopy Data

The automated identification and quantification of illicit materials using Raman spectroscopy is of significant importance for law enforcement agencies. This paper explores the use of Machine Learning (ML) methods in comparison with standard statistical regression techniques for developing automated identification methods. In this work, the ML task is broken into two sub-tasks, data reduction a...

متن کامل

Improving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features

Heart is one of the most important members of the body, and heart disease is the major cause of death in the world and Iran. This is why the early/on time diagnosis is one of the significant basics for preventing and reducing deaths of this disease. So far, many studies have been done on heart disease with the aim of prediction, diagnosis, and treatment. However, most of them have been mostly f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of biomedical photonics & engineering

سال: 2023

ISSN: ['2411-2844']

DOI: https://doi.org/10.18287/jbpe23.09.020308